TWR-77407 ECS SS12947







# Reusable Solid Rocket Motor STS-112 Flight Readiness Review/CoFR

Motor Set RSRM-87

17 September 2002

Presented by Stan Graves



ATK THIOKOL PROPULSION

P.O. Box 707, Brigham City, UT 84302-0707 (435) 863-3511







## Agenda

#### Flight Readiness Review/CoFR

- 1.0 Previous Flight Assessment—STS-111—No Issues
- 2.0 Certification Status—No Constraints
- 3.0 Changes Since Previous Flight
- 4.0 Configuration Inspection
  - 4.1 As-Built Versus As-Designed, Hardware, and Closeout Photo Review Status—No Issues
  - 4.2 Hardware Changeouts Since ET/SRB Mate Review—None
- 5.0 SMRB Nonconformances—No Issues
- 6.0 Technical Issues/Special Topics
- 7.0 Readiness Assessment

Backup LCC and Contingency Temperatures for STS-112









# **Previous Flight Assessment—STS-111**

1.0-1

#### Disassembly Evaluation Summary—Status of Disassembly Activity

| KSC Operations                                   |   | LH<br>RSRM  | RH<br>RSRM  | Remarks   |  |  |  |
|--------------------------------------------------|---|-------------|-------------|-----------|--|--|--|
| Initial LH/RH SRB viewing                        | * | Complete    | Complete    |           |  |  |  |
| SRB/RSRM walkaround assessment                   | * | Complete    | Complete    |           |  |  |  |
| Demate/evaluate aft exit cone (AEC)              | * | Complete    | Complete    |           |  |  |  |
| Remove/evaluate S&A and OPTs                     | * | Complete    | Complete    | No Issues |  |  |  |
| Remove/evaluate nozzle                           | * | Complete    | Complete    |           |  |  |  |
| Remove/evaluate stiffener rings/stubs            |   | Complete    | Complete    |           |  |  |  |
| Remove/evaluate igniter                          | * | Complete    | Complete    |           |  |  |  |
| Demate/evaluate field joints/evaluate insulation | * | Complete    | Complete    |           |  |  |  |
| Utah Operations                                  |   |             |             |           |  |  |  |
| Disassemble/evaluate nozzle (joint No. 4 and 5)  | * | Complete    | Complete    | No Issues |  |  |  |
| Disassemble/evaluate nozzle (joint No. 2 and 3)  | * | Complete    | Complete    |           |  |  |  |
| Disassemble/evaluate S&A                         | * | Complete    | Complete    |           |  |  |  |
| Washout nozzle phenolics                         |   | Complete    | Complete    |           |  |  |  |
| Washout nozzle AEC phenolics                     |   | 19 Sep 2002 | 19 Sep 2002 |           |  |  |  |
| Measure/evaluate aft dome insulation             |   | Oct 2002    | Oct 2002    |           |  |  |  |

<sup>\*</sup> RSRM Project committed to complete prior to next launch

#### No constraints to STS-112 flight









# **Changes Since Previous Flight**

3.0 - 1

#### **Supplier Process**

SOCR V001794, Incorporate New Larger O-ring Spiral Cordstock Molds in Fabrication Status: Approved

#### **Change Description**

Increase size of spiral cordstock molds to make longer pieces of O-ring cordstock. Cordstock length increases from 20 to 40 feet

#### Reason for Change

Longer pieces of cordstock reduce the number of, or eliminate, "in-process splices"

# Was: Is: April April

#### **Basis of Verification**

Similarity: New molds are identical to the previous molds (same material, thickness, spacing between grooves, groove depths, chrome plating, etc.) except for size and number of spiral coils

Time, temperature, and pressure used in the molding process is unchanged. Temperature sensors across the platens of the new press allow for complete monitoring of cure temperatures

Test: Material properties verification includes tensile strength, elongation, Shore A hardness, compression set, resiliency, and specific gravity—within family. TGA testing indicates expected O-ring erosion performance to be equivalent

Inspection: Visual, dimensional, and x-ray inspection of finalized O-rings ensure acceptability

STS-112 and subsequent are safe to fly







# Technical Issues/Special Topics

6.0 - 1

#### X-ray Inspection of Igniters, Loaded Segments, and Nozzles

#### **Observation**

- Audit of archived x-ray film records in work for all RSRM hardware in inventory
  - 26,332 pieces of film per flight set (igniters—324, loaded segments—8272, and nozzles—17,736)
- STS-112 audit accounted for 26,311 pieces of required film (99.92 percent)
  - 16 pieces of missing film and five occurrences of incorrect film speed/exposure
  - Redundant exposures and overlaps fully screened all missing/incorrect film areas except three small regions
    - RH forward-center segment: 3.87-in. axial region in insulation at 219 deg
    - LH nozzle aft inlet ring: 0.25-in. zone near carbon-phenolic flame surface at 249 deg
    - RH nozzle aft inlet ring: 0.188-in. glass-phenolic zone at 63 deg

#### Concern

- Can defects of concern exist in the three regions with less than full x-ray coverage?
- Does film accountability issue indicate a problem with integrity of film read?









# Technical Issues/Special Topics

6.0-2

#### X-ray Inspection of Igniters, Loaded Segments, and Nozzles (Cont)

#### **Discussion**

- Three regions analyzed with assumed worst-case defects that may not be detected by adjacent x-ray shots
  - Positive margins of safety for all cases using worst-case loads and material properties
  - All STS-112 process and material properties in-family, all other inspection results nominal (adjacent shots, alcohol wipe, etc.)
- Review of film read integrity identified no issues
  - Practitioner interviews—film read is clearly their focus
  - Intensive practitioner certification process and ongoing maintenance in-place
  - Every fifteenth part is independently re-reviewed on an ongoing basis—no issues
  - In excess of 1500 pieces of film independently re-read—no issues

#### Flight Rationale

- Structural and thermal analyses for assumed defects show positive margins
- All materials and processes are in-family: In-family performance expected
- STS-112 is safe to fly







# ATK THIOKOL PROPULSION



### STS-112 Readiness Assessment

Pending satisfactory completion of normal operations flow (per OMRSD), the RSRM hardware is ready to support flight for mission STS-112

17 September 2002

/s/ S. R. Graves

S. R. Graves Director, RSRM Engineering Thiokol

/s/ E. C. Ralston

E. C. Ralston Vice President RSRM Program Management Thiokol



/s/ R. K. Burt

R. K. Burt Chief Engineer, RSRM Project NASA, MSFC

/s/ M. U. Rudolphi

M. U. Rudolphi Manager RSRM Project Office NASA, MSFC







Backup-1

# **Current Flight Predictions**

#### LCC and Contingency Temperatures for STS-112

| Heater Location      | <u>LCC</u> | Minimum Allowable Sensor Temperature* |           |  |
|----------------------|------------|---------------------------------------|-----------|--|
|                      |            | <u>LH</u>                             | <u>RH</u> |  |
| lgniter              | 74°F       | <b>72</b> ° <b>F</b>                  | 72°F      |  |
| Forward Field Joint  | 86°F       | 65°F                                  | 69°F      |  |
| Center Field Joint   | 86°F       | 71°F                                  | 70°F      |  |
| Aft Field Joint      | 86°F       | 70°F                                  | 66°F      |  |
| Nozzle-to-Case Joint | 75°F       | 65°F                                  | 63°F      |  |

\*LCC contingency temperature in the event of heater failure Note: Calculation includes all standard repair conditions

